Euklidova geometrie - pochybnosti - Iv   <   PDF

verze 1. 1. 2019

Bohumír Tichánek

*   *   *

Mysl nebéře zákony z přírody, nýbrž sama jí je předpisuje [1]

Immanuel Kant (1724 - 1804)


Matematické iracionality nevystihují geometrii. Prozkoumáním detailů se blížíme skutečnosti, nikoliv jejich zanedbáním. Vždy vidíme perspektivní prostor, nikdy Euklidův.


Neeuklidovské prostory

Obr. 1.

Již po několik staletí exaktní vědy neuvažují jen Euklidův lineární spojitý prostor, nýbrž teoreticky připravily a i prakticky Vesmíru uvažují další prostory - neeuklidovské.


Úhlopříčka s Pythagorovou větou

Obr. 2.

Námitka: geometrická vzdálenost mezi protějšími vrcholy jednotkového čtverce je konečná a přesto je její výpočet bez konce! Iracionální výsledek neposlouží, nýbrž řešitel si vybere některé racionální číslo jako nepřesný výsledek. Například 1,4.

Čísla buď racionální nebo iracionální sdělují vzdálenosti v Euklidově světě nebo i v zakřivených prostorech. Jenže dvě úsečky se liší výhradně kvantitativně, kdežto kvalitu mají jedinou - proč tedy dva druhy čísel?


Rostoucí vzdálenost podle výpočtu

Obr. 3.

Pokračujícím výpočtem se počítaná délka stále jen upřesňuje, například prodlužuje. Výsledek nevznikne!


4D krychle složená z osmi 3D krychlí

Obr. 4.

Spojité čtyřrozměrné krychle, různě zdůrazněné. Svými smysly ve světě nezjišťujeme nejen ji, ale ani 3D objekty nevidíme v Euklidově prostoru. Lineární spojitý prostor je hypotézou, zrak jej neukazuje.


Nesouměřitelnost

Obr. 5.

Nesouměřitelnost. Po výpočtu Pythagorovou větou se někdy udává vzdálenost jako racionální, jindy iracionální, aniž by se na ostatních fyzikálních vlastnostech bodů nebo vzdálenosti v prostoru něco změnilo. Takové matematické vyjadřování vzbuzuje pochybnosti.


Pythagorova věta v síti

Obr.6.

Pythagorova věta, ve čtvercové síti, snad prokazuje předpokládanou skutečnost? Součty obsahů malých čtverců mají být rovny obsahu velkého čtverce:
(1 + 2) + (3 + 4) = 1' + 2' + 3' + 4'

Jenže pohledem zjišťujeme obrazec podrobený perspektivě. Na to zapomínáme. Zrak nezaručí, zda obrazce vyhovují Pythagorově větě. A výpočty poukazují na Euklidův prostor iracionální - neskutečný.

Hmat snad zaručuje skutečnost? Chodec - středový pozorovatel, má každý další krok opět první. Tím stále zůstává v počátku stlačených souřadnic perspektivního prostoru. Můžeme přísahat, že svět má lineárně rozloženou hmotu?



2 = x · x

x
= ?    

Vybírám mezi dvěma možnostmi. Hledaná odmocnina je buďto číslem - anebo pokynem k hledání čísla: najdi číslo, které násobené samo sebou dá dvě! Matematika pracuje s číslem jakoby nalezeným. Jejím upřednostňováním se zastavují možné postupy k vyřešení nesrovnalosti, vyjádřené 3. obrázkem. Upřesněme svět, ve kterém žijeme!


Různoběžky, rovnoběžky?

Obr. 7. Různoběžky či rovnoběžky (podle www.gymfry.cz)

Názor Ernsta Macha: zvláště fyzika získá největších vysvětlení od biologie, a to analýzou smyslových počitků [1].

Vycházel z názoru, že objektem vědy jsou komplexy počitků, které nemají objektivní příčinu. Matematika vznikla ze smyslových zážitků. I když až jejich abstrakcí. Fyzikální poznatek o teplotě hrnku s vřelou vodou lze někdy zjistit i bez přemýšlení, kdežto zjistit počet hrnků vyžaduje abstrahovat.

Zjišťuji jakousi nesnáz pro závěry filosofa K. Poppera. Na jedné straně bývají smyslové zážitky ovlivněné chybami. Například hledíme na obraz rovnoběžek, ale máme mylný pocit, že jsou to různoběžky (obr. 7). Nejmenší detaily určují naše rozhodnutí. Teprve prozkoumáním detailů se blížíme skutečnosti, nikoliv jejich zanedbáním.

K mnohému poznání nás prvotně vede prostor, který je obsažený v našich smyslových zážitcích. Tyto zážitky jsou nevyvratitelnými zdroji informací. Věda opravuje svými vysvětleními až chápání zážitků. Zážitky vysvětluje. Vidí-li opilec bílé myši, pak mu nikdo nevyvrátí, že vidí bílé myši. A přitom on sám může souhlasit, že nejsou skutečné.

Filosof Karl Raimund Popper poučil - předpokladem vědeckého pokroku je vyvratitelnost přijímaných poznatků. Nevyvratitelné názory věda nejen odmítá, ale někdy jimi lidé i opovrhují. Jenže naše nevyvratitelné smyslové zážitky jsou základem poznání.

Kde, v jakém prostoru hledáme zdůvodnění fyzikálních poznatků? Kde hledáme svůj život?

„Co tu děláte?“
„Hledám klíče. Někde mi v kuchyni vypadly.“
„A proč je hledáte tady na dvorku?“
„Protože venku je světlo, v kuchyni mám tmu!“

Závěr proslulé historky sděluje Osho:

Rábi'a řekla: „Myslíte si, že jsem blázen, a přitom po celý život děláte přesně tohle - a nejste blázni? Kde jste ztratili sebe a kde se sami sebe snažíte najít? Kde jste ztratili svou blaženost a kde se ji snažíte najít? Ztratili jste ji ve svém vnitřním světě, ale hledáte ji venku!“ [2]


Literatura

[1] Kantova filosofie ve svých vztazích k vědám exaktním - Karel Vorovka. JČMF, Praha 1924, s. 119

[2] Setkání s pozoruhodnými lidmi - Osho. Překlad Jana Žlábková. Nakl. BETA, Praha 2011, s. 220. (Orig. 2003, 2008)


www.tichanek.cz